
 1

The Impact of Information Technology on the Temporal Optimization 
of Supply Chain Performance 

 
Ken Dozier 

University of Southern California 
kdozier@usc.edu

 
David Chang 

dbcsfc@aol.com  
 

 
Abstract 
 
The objective of this paper is to suggest a 
systematic means by which the timing and 
focus of information technology policies can 
be used to optimize supply chain 
performance and reduce production times.  
This is done by extending an earlier 
statistical physics model for quasi-static 
situations to examine temporal phenomena 
in manufacturing supply chains.  
 
A simple model is considered in which the 
product manufacturing process in a supply 
chain resembles the flow of a fluid in a pipe.  
At each position in the pipe, value is added 
to the fluid to produce the finished product 
at the exit orifice.  Following the statistical 
physics model, information technology 
policy impacts the rate of change of the flow 
velocity by the action of a statistical 
physics-derived effective force.   
 
It is found that wave phenomena naturally 
occur in the inventories in supply chains.  A 
simple quasilinear analysis of the 
phenomena shows that information 
technology policy can be used to adjust 
timing and position issues to allow the chain 
to resonate with the propagating waves, in a 
manner that most effectively in reduces 
overall production times. This is the first 
step in an analytical mathematical approach 
that allows the evaluation of information 
technology architectures and topologies that 
optimize production outputs and minimize 
production disruptions. 
 

 
1.  Introduction 
 
Many government policies have been 
implemented over the years to stimulate 
innovation and promote entrepreneurship in 
the private sector.  These have taken many 
forms.  At one end of the spectrum, tax 
incentives have been provided to encourage 
investments in research and development.  
To encourage innovation in areas of 
particular value to the national interest, 
expedited review and issuance of patents 
have been instituted.  Procurement policies 
of the various government agencies have 
included special set-asides for small 
entrepreneurial businesses.  An effective 
small business innovation research (SBIR) 
program has been in place for several years 
to provide research and development funds 
to entrepreneurs.  One important policy 
focus had been overlooked: A policy that 
encourages Information Technology 
investment in the small business community.  
 
It was demonstrated that IT investment by 
small firms not only increases firm output, it 
also has a second positive impact of job 
creation (Dozier and Chang 2006).  IT may 
play a critical role in increasing a small 
firms ability to survive in the dynamic 
environment of a manufacturing supply 
chain.  All manufacturing firms small and 
large are impacted by supply chain issues.  
General Motors employs 1700 people just to 
manage their supply chain.  Most small 
firms are tossed about on the complex and 
turbulent disruptions that propagate through 
supply chains.  Sterman and others have 
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done much to demonstrate the destructive 
nature of even a single change in simple 
supply chain (Beer Game simulation) 
(Sterman 2000).  While this has done a great 
service by increasing awareness of the 
problem, it does little to provide tools that 
can be used to optimize supply chain 
performance or minimize damage caused by 
mismanagement of inventory stores and 
flows. 
 
Of special concern is a striking disparity 
between the long time scales of government 
and large firm policy decisions compared to 
the market-driven increasingly short time 
scales of the private sector (Koehler 2003).  
The synergy between the public and private 
sector policy is diminished by the 
differences in these time scales as well as 
many underlying difference in cultures.   
 
Government and large firm policy decisions 
can affect many aspects of the 
manufacturing process that act as tsunami’s 
of change that can overwhelm the small 
firm. This paper begins the effort to create a 
mathematical model that can be easily 
simulated to allow managers to minimize the 
negative impact of unexpected external 
perturbations such as government and large 
firm supply chain policy shifts.  The ability 
to optimize production times in an ever 
shifting manufacturing supply chain is 
critical to small firm survival. 
 
Section 2 describes a simple model of a 
manufacturing supply chain that is based on 
the analogy between the flow of an evolving 
product through a manufacturing supply 
chain from its basic component elements at 
the input end to its finished state at the 
output end, and the flow of a fluid through a 
pipe.   
 
Section 3 demonstrates that the equations 
corresponding to the simple supply chain 
model have oscillatory wave-like solutions.  
These describe inventory perturbations that 
travel along the supply chain. 
 

Section 4 then introduces the subject of 
external policy actions on the supply chain.  
It builds on our earlier statistical physics 
work that showed that information transfer 
could be described by a “force” that causes a 
change in the unit cost of production.  In the 
model this force results in an acceleration of 
the flow velocity in the supply chain flow.  
A quasilinear equation is developed that 
shows how a net (secular) change can occur 
in the rate at which an evolving product 
moves through the supply chain. 
 
Section 5 summarizes and discusses the 
model results and their implications for the 
development of information technology 
topologies that minimizes the disturbances 
lowers unit production costs 
 
2.  Supply chain model 
 
In this Section equations will be developed 
for a “fluid in a pipe” model of a 
manufacturing supply chain.  Thus, in a 
supply chain, the basic component elements 
involved in producing a product enter at the 
starting end, and a finished product emerges 
at the output end.  In between, value is 
added at each step by combining, modifying, 
manipulating, assembling, etc. the results of 
the previous step to produce input to the 
next step.  In some ways this can be likened 
to fluid flowing in a pipe, with different 
“colors” added to the fluid as it flows 
through the pipe.  At the starting end of the 
pipe, the entering fluid would be clear, 
whereas at the output end a fluid with a rich 
blend of colors would emerge. 
 
In this model, the manufacturing supply 
chain has a very simple daisy chain topology 
for the interconnection of the information 
system.  This can be characterized as 
consisting of several stages arranged in 
tandem.  The nth stage receives information 
input from the (n-1) stage and delivers 
information output to the (n+1) stage.   This 
occurs for the n(total) stages in the chain.  A 
conservation equation can be written for the 
number of units being manufactured at any 
particular time at any stage. 
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To simplify the mathematics, the following 
approximations will be made: 
 
1.  The number of stages is large therefore 
the discrete variable n (n=1, 2 ..., n(total))  is 
replaced by a continuous variable x that runs 
from 1 to n(total), and that takes on the 
value of n when x has an integer value.  This 
permits the replacement of difference 
expressions by differential expressions. 
 
2.  The total number of stages n(total) will 
be assumed to be so large, n(total)>>1, that 
end effects of the chain will be ignored.   
 
It is apparent that both of these 
approximations can be relaxed easily:  
however, the approximations will be used in 
this short paper in order not to detract from 
the essential features of the results. 
 
After replacing the variable n with x, we can 
then designate the rate, at which an entity 
moves through the supply chain by the 
velocity variable v,  
 
 v = dx/dt  [1] 
 
By analogy with the dynamic equations for 
fluid flow, the time rate of change of the 
velocity v will be given by an equation 
patterned after the F=MA equation of 
kinetics: 
 
 F = dv/dt  [2] 
 
F is an appropriate “force” that drives the 
process. 
 
What is this force? It was shown by 
applying the Lagrange multiplier approach 
of statistical physics to determine the most 
likely distribution of unit costs of production 
in a time-independent situation, that a 
statistical physics force can be uniquely 
determined from this distribution (Dozier 
and Chang 2005). A common feature of 
both situations is the effective force that 

drives the phenomena, and this is 
derived from the partition function. 
 
Specifically, the most likely distribution of 
unit costs of production gives rise to a 
partition function 
 
 Z = ∑ exp[-βC(i)]  [3] 

where C(i) is the unit cost of production 
of the ith company in the distribution. 

Associated with this partition function is 
a “Helmholtz free energy” F defined by
   

 exp[- βF] = Z   [4] 

where β – which we call the 
“bureaucratic factor” - plays the role of 
an inverse temperature, and is a measure 
of how much dispersion there is in the 
unit costs of production.  The statistical 
physics formalism then gives for the 
force f(ξ) associated with the variation of 
any parameter ξ of the system 

 f(ξ) = ∂F/∂ξ  [5] 

For our purposes, we can later choose 
the manufacturing system parameter ξ to 
be any quantity that is the focus of the 
intervention.  For example, ξ can be the 
amount of technology change induced 
by a government incentive or a prime 
contractor’s new requirement. 

To obtain eq. [2] from eq. [5], we 
assume that the change in the free 
energy F of the system associated with 
f(ξ) translates directly to a change in the 
rate at which production processes occur 
in the supply chain.  In that case, the 
force F in eq. [2] is simply proportional 
to f(ξ). 

 F = α f(ξ)  [6] 
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Where α is a constant of proportionality 
that depends on the particular system 
parameter ξ that is changed. 

Now introduce a simple differential 
distribution function f(x,v,t)dxdv that 
denotes the number of production units 
in the intervals dx and dv at x and v at 
the time t.  A conservation equation can 
be written for f: 

 ∂f/∂t + ∂[fdx/dt]/∂x +∂[fdv/dt]/∂v = 0
     [7] 

This equation simply states that the 
change of fdxdv is due only to the 
divergence of the flow into dxdv. 

Using equations [1] and [2] this can be 
rewritten. 

 ∂f/∂t +  ∂[fv]/∂x +∂[fF]/∂v = 0 
     [8] 

Since x and v are independent variables, 

 ∂v/∂x = 0  [9] 

If. the force F does not depend on v, 

 ∂F/∂v = 0  [10] 

then eqs [8]-[10] yield. 

 ∂f/∂t + v∂f/∂x + F∂f/∂v = 0 
    [11] 

This has the familiar form of the Vlasov 
equation for collisionless plasmas.  It is 
expected that many of the benefits of 
this application form for many-body 
problems should also apply here(Spitzer 
1956).  

It is convenient to deal with is the 
number of production units in the 
interval dx and x at time t, 

N(x, t) = ∫dvf(x,v,t) [12] 

and 

 V(x,t) = (1/N)∫ vdvf(x,v,t) 
    [13] 

where N(x,t)dx and V(x,t) is the average 
velocity of flow of the production units 
at x at time t.   

 

By taking the v0 and v1 moments of eq. 
[11] – see, e.g.(Spitzer 1956), we find 

 ∂N/∂t + ∂[NV]/∂x = 0  
    [14] 

and  

 ∂V/∂t +V∂V/∂x = F1 - ∂P/∂x 
    [15] 

where F1(x,t) is the total force F acting 
per unit dx and P is a “pressure” defined 
by the dispersion of the velocities v 
about the average velocity V: 

 P(x,t) = ∫dv(v-V)2 f(x,v,t) 
    [16] 

We can write eq. [16] in the form 

P(x,t) = ∫dv(v-V)2 f(x,v,t) = N(x,t) (∆v)2

    [17] 
 
where  
 
 (∆v)2 = ∫dv(v-V)2 f(x,v,t)/N(x,t)
    [18] 
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This is a convenient form, since we it 
shall assume for simplicity that the 
velocity dispersion (∆v)2 is independent 
of level x and time t.  In that case, eq. 
[15] can be rewritten as  
 
∂V/∂t +V∂V/∂x =F1 - (∆v)2 ∂N/∂x 
    [19] 

This implies the change in velocity flow 
is impacted by the primary forcing 
function and the interacting gradients at 
production locations.  Equations [14] 
and [19] are the basic equations that we 
shall use in the remainder to describe 
temporal phenomena in our simple 
supply chain model. 

3.  Supply chain normal modes 

A technique that has been found to be 
very useful in the analysis of temporal 
phenomena in physical systems is to first 
identify the normal modes of the system.  
The normal modes are naturally 
occurring oscillatory perturbations of the 
system, and they are important in 
determining the response of the system 
to external forces.  If an external force 
has the same spatial form and frequency 
as a normal mode, then that mode is 
resonantly excited, and can have quite 
large amplitude. 
 
Thus, to determine the response of a 
supply chain to external forces imposed 
by an external policy change, it should 
be useful to first determine the natural 
normal modes of the supply chain. 
 
The normal modes are usually obtained 
by looking at the perturbations of the 
system about its steady state.  
Accordingly, let us introduce the 
expansions 
 

 N(x,t) = N0 +N1(x,t)  
    [20] 
 
and  
 
 V(x,t) = V0 + V1(x,t)  
    [21] 
 
about the level- and time-independent 
steady state density N0 and velocity V0.  
(We can take the steady state quantities 
to be independent of the level in the 
supply chain, since we are considering 
long supply chains in the approximation 
that end effects can be neglected.) 
 
Substitution of eqs. [20] and [21] into 
eqs. [14] and [19], we see that the lowest 
order equations (for N0 and V0) are 
automatically satisfied, and that the first 
order quantities satisfy 
 

∂N1 /∂t + V0 ∂N1 /∂x  + N0 ∂V1 /∂x = 0
    [22] 

and  

∂V1 /∂t +V0 ∂V1 /∂x =  

F1(x,t) -  (∆v)2 ∂N1 /∂x            [23] 

where F1(x,t) is regarded as a first order 
quantity. 

For an oscillatory disturbance,   

 N1(x,t) = N1(x) exp(iωt) 
    [24] 

 V1(x,t) = V1(x) exp(iωt) 
    [25] 

and for a normal mode, there is no 
external applied for F1. 
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Since the coefficients in eqs. [22] and 
[23] are independent of x, the equations 
have eigenfunctions (normal modes) of 
the form 

 N1(x) = N1exp(-ikx) [26] 

 V1(x) = V1exp(-ikx) [27] 

i.e. the normal modes are propagating 
waves: 

 N1(x,t) = N1exp[i(ωt -kx)] 
    [28]  

 V1(x,t) = V1exp[i(ωt -kx)] 
    [29] 

With these forms, eqs. [22] and [23] 
become 

 i (ω-kV0)N1   +  N0 ikV1  = 0 
    [30] 

 i N0 (ω-kV0)V1 = -ik (∆v)2N1  
    [31] 

In order to have nonzero values for  N1 
and V1, these two equations demand that 

 (ω-kV0)2 = k2(∆v)2  

    [32] 

Eq. [32] has two possible solutions 

 ω+ =  k (V0 + ∆v)  
    [33] 

 ω- =  k (V0 - ∆v)  
    [34] 

The first corresponds to a propagating 
supply chain wave that has a propagation 
velocity equal to the sum of the steady 
state velocity V0  plus the dispersion 
velocity width ∆v.  The second 

corresponds to a slower propagation 
velocity equal to the difference of the 
steady state velocity V0  and the 
dispersion velocity width ∆v.   

 A different supply chain model was 
considered by Dozier and Chang (Dozier 
and Chang 2005). In that model (the 
continuum limit) is equivalent to the 
model discussed here when  either V0 or 
∆v  is 0. 

4.   Interactions 

As indicated earlier, our focus in this 
paper is on the effect of external 
interactions such as government policy 
and supply chain perturbations on the 
rate at which an evolving product moves 
along the supply chain.  In Section 2, it 
was pointed out that this occurs in the 
equations through a force F1(x,t) that 
acts to accelerate the rate.  From the 
discussion of Section 3, we expect that 
this force will be most effective when it 
has a component that coincides with the 
form of a normal mode, since then a 
resonant non destructive interaction can 
occur. 

To see this resonance effect, it is best to 
present the force F in its Fourier 
decomposition 

 F1(x,t) = 
(1/2π)∫∫dωdkF1(ω,k)exp[i(ωt-kx)] 
    [35] 

where 

 F1(ω,k) = 
(1/2π)∫∫dxdtF1(x,t)exp[-i(ωt-kx)] 
    [36] 

With this Fourier decomposition, each 
component has the form of a propagating 
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wave, and it would be expected that 
these propagating waves are the most 
appropriate quantities for interacting 
with the normal modes of the supply 
chain. 

Our interest is in the change that F1 can 
bring to V0, the velocity of product flow 
that is independent of x.  By contrast, F1 
changes V1 directly, but each wave 
component causes an oscillatory change 
in V1 both in time and with supply chain 
level, with no net (average) change. 

To obtain a net change in V, we shall go 
to one higher order in the expansion of 
V(x,t): 

 V(x,t) = V0 + V1(x,t)+ V2(x,t) 
    [37] 
 
On substitution of this expression into 
eq. [19], we find the equation for V2(x,t) 
to be 
 
   N0(∂V2/ ∂t + V0∂V2/∂x) + N1(∂V1/ ∂t + 
V0∂V1/∂x) + N0 V1∂V1/∂x = 

 
 - (∆v)2 ∂N2 /∂x 

[38] 
 
 Fourier analysis of this equation, using 
for the product terms, the convolution 
expression: 
 
 ∫∫dxdt exp[-i(ωt-kx)] f(x,t)g(x,t) 
= ∫∫dΩdK f(-Ω+ω, -K+k)g(Ω,K)  
    [39] 
 
where 
     
   
f(Ω,K) = ∫∫dxdt exp[-i(Ωt-Kx)]f(x,t) 
    [40]  

g(Ω,K) = ∫∫dxdt exp[-i(Ωt-Kx)]g(x,t) 
    [41] 

Since we are interested in the net 
changes in V2 – i.e. in the changes 
brought about by F1 that do not oscillate 
to give a zero average,  we need only 
look at the expression for the time rate of 
change of the ω=0, k=0 component, 
V2(ω=0, k=0).   

From eq. [38], we see that the equation 
for ∂ V2(ω=0, k=0)/∂t requires knowing 
N1  and V1.  When F1(ω,k) is present, 
then eqs. [30] and [31] for the normal 
modes are replaced by 

i (ω-kV0)N1(ω,k)    +  N0 ikV1(ω,k)  = 0
    [42] 

i N0 (ω-kV0)V1(ω,k)  =  

-ik (∆v)2N1(ω,k) + F1(ω,k)  
    [43] 

These have the solutions 

 N1(ω,k)  = 

 -ik F1(ω,k) [(ω-kV0)2 – k2 (∆v)2]-1 
    [44] 

V1(ω,k)  = - i {F1(ω,k)/N0}(ω-kV0) [(ω-
kV0)2 – k2 (∆v)2]-1   
    [45] 

Substitution of these expressions into the 
ω=0, k=0 component of the Fourier 
transform of eq. [38] gives directly 

    ∂ V2(0,0)/∂t  = ∫∫dωdk(ik/N0
2) (ω-

kV0)2 [(ω-kV0)2 – k2 (∆v)2]-2 F1(-ω,k) 
F1(-ω,k)   [46] 
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This resembles the quasilinear equation 
that is has been long used in plasma 
physics to describe the evolution of a 
background distribution of electrons 
subjected to Landau acceleration 
(Drummond and P. 1962). 

As anticipated, a resonance occurs at the 
normal mode frequencies of the supply 
chain, i.e. when  

(ω-kV0)2 – k2 (∆v)2 = 0 [47] 

First consider the integral over ω from ω 
= -∞ to ω = ∞.  The integration is 
uneventful except in the vicinity of the 
resonance condition where the integrand 
has a singularity.   

To determine the effect of the singularity 
– which as we have seen lies on the real 
ω axis, circumscribe a very small circle 
about the singularity in the complex-ω 
plane.  Perform a contour integration of 
the integrand around the circle in a 
counterclockwise direction.  When the 
circle is very small, the contribution of 
the top half of the circle is the same as 
that from the bottom half.  We can then 
use the familiar result from the theory of 
analytic functions 

 ∫dz f(z)/(z-z0)n+1 =  2πi f(n)(z0)/n!
     
    [48] 

to evaluate the contribution of the 
singularity.  For the rationale for this 
procedure, see. e.g.,  (Chang 1964). 

When this is applied to eq. [46], we find 
that when the bulk of the spectrum of 
F1(x,t) is distant from the singularities, 
the principal part of the integral is 
approximately zero, where the principal 
part is the portion of the integral when ω 

is not close to the singularities at  ω = 
k(V0± ∆v).  This leaves only the 
singularities that contribute to  
∂V2(0,0)/∂t . 

The result is the simple expression: 

 ∂V2(0,0)/∂t = π/(N0
2∆v) ∫dk(1/k) 

[ F1(-k(V0- ∆v, -k)F1(k(V0- ∆v),k) –  

(-k(V0+ ∆v, -k)F1(k(V0+∆v),k)]  
    [49] 

Equation [49] suggests that any net 
change in the rate of production in the 
entire supply chain is due to the Fourier 
components of the effective statistical 
physics force describing the external 
interactions with the supply chain, that 
resonate with the normal modes of the 
supply chain. 

5.  Discussion 

The purpose of this paper has been to 
begin exploration of the effects of 
external interactions on the production 
rate in a manufacturing supply chain.  Of 
special interest is impact of a simple 
“daisy chain” topology of the 
information systems that connects the 
supply chain as it pertains to the timing 
of the interventions that should have the 
optimum positive effect.   

To study these two questions, a simple 
model of the supply chain has been 
considered in which the evolving 
product moves through the supply chain 
in somewhat the same way that fluid 
moves through a pipe.  At each stage of 
the supply chain, value is added, until at 
the output end of the chain the final 
finished product emerges. 
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The fluid-like equations show that 
naturally occurring oscillatory 
phenomena occur in the supply chain.  
These oscillations take the form of 
propagating waves.  For the simple 
model treated in this paper, the waves 
propagate at two velocities that depend 
on the average steady state rate of 
production and the dispersion of rates 
about this average. 

The most interesting finding of the 
analysis is that net changes in the 
production rate of the entire chain are 
related to the Fourier components of the 
intervention that resonate with the 
propagating waves of the supply chain.  
This is very similar to physical 
phenomena in which an effective way to 
cause growth of a system parameter is to 
apply an external force that is in 
resonant with the normal modes of the 
system. 

Although the linear supply chain model 
treated here is quite simplistic, we 
believe that for more complex 
manufacturing clusters, the same type of 
result would occur.  We see that the 
simple linear topology does nothing to 
dampen the effects of interventions at 
various locations in the supply chain.  
The model does provide enough 
information to allow examination of the 
optimal timing for the interventions: 
something not possible in the simulation 
models to date.  The most effective 
interventions will be those that have time 
scales comparable to the natural time 
scales of the systems, and that are 
applied to the systems so as to mimic the 
naturally occurring patterns of the 
normal modes of the systems.  Future 
work will examine the impact of various 
IT topologies and the ability of shared 
knowledge between co suppliers to 

optimize their cooperative production 
rates.  It will also be interesting to 
determine the minimal amount of 
information that is required for positive 
cooperation.   
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